FREE SAMPLE

Pragmatic DDD with Laravel

Al will love your code

by John Macias

Chapter 2: The Three Pillars

Chapter 2: The Three Pillars

This book combines three architectural concepts:

1. Domain-Driven Design (DDD) — Where to put businesslogic
2. Hexagonal Ar chitecture — How to structure the code
3. CQRS — How to separate reads from writes

Each solves a different problem. Together, they create a coherent system.

Pillar 1: DDD — Business Logic in the Domain
DDD answers the question: Where does business logic live?
Answer: In thedomain layer.

Not in controllers. Not in Eloguent models. Not scattered across services. In a dedicated layer that knows
nothing about HTTP, databases, or frameworks.

The Domain Layer Contains:

Entities— Objects with identity that persist over time.

final class Booking extends Entity

{

public function confirn(): void

{
if ($this->status !== BookingStatus:: Pending) {
t hr ow new Booki ngCannot BeConf i r med($t hi s->i d);

}

$t hi s->status = Booki ngSt at us: : Confi r med;
$t hi s->confirnedAt = new DateTi nel mut abl e() ;

$t hi s->recor dEvent (new Booki ngConf i r med($t hi s->id));

}

Value Objects — Immutable objects defined by their attributes.

final readonly class TineSl ot

{
public function _ construct(
publ i c DateTi nel mut abl e $dat e,
public int $hour,
public int $mnute
) |
if ($hour < 0 || $hour > 23) {
throw new | nval i dTi neSl ot (' Hour nust be between 0 and 23');
}
}
public function isBefore(Ti neSlot $other): bool
{
return $this->toDateTinme() < $other->toDateTime();
}
}

Domain Events — Records of things that happened.

final readonly class BookingConfirmed inplements Domai nEvent

{

public function _ construct(
publ i ¢ Booki ngld $booki ngl d,
publ i c Dat eTi mel mmut abl e $occurredAt

) {3

Domain Services— Logic that doesn't belong to any single entity.

final readonly class Booki ngAvail abilityChecker

{
public function __construct(
private Booki ngRepositorylnterface $booki ngRepository
) {3
public function isAvail abl e(
Restaurantld $restaurantld,
Ti meSl ot $tinmeSl ot,
PartySi ze $partySize
): bool {
$exi st i ngBooki ngs = $t hi s->booki ngReposi tory
->findActi veByRest aur ant AndTi neSl ot ($restaurantld, $tinmeSlot);
/] Business logic for availability
return $exi stingBooki ngs->total PartySi ze() + $partySi ze->val ue() <= 50;
}
}

What the Domain Layer Does NOT Contain:

« Database queries
« HTTP concerns

» Framework dependencies

« Email sending
 External API cals

The domain layer is pure business logic. It could run without Laravel.

Pillar 2: Hexagonal Architecture — Ports & Adapters

Hexagonal Architecture (also called Ports & Adapters) answers: How do | isolate my business logic?

The Core Concept

Imagine your application as a hexagon:

Hexagonal Architecture
(Ports & Adapters)

DRIVING ADAPTERS DRIVEN ADAPTERS
(Incoming) (Outgoing)
HTTP Database
cu DOMAIN APls
Ports Ports
Pure Business Logic
Queue (Entities, Value Objects,
Domain Events, Services) Email
Tests
Files
¢ implements
INFRASTRUCTURE

Implements interfaces defined in Domain
(Repositories, Mappers, External Services)

Hexagonal Architecture diagram showing the domain at the center of a hexagon, with incoming adapters (HTTP, CLI,
Queue, Tests) on the left side and outgoing adapters (Database, External APIs, File System) on the bottom

« Inside the hexagon: Y our domain logic (pure business rules)
* Ports: Interfaces that define how the outside world interacts
» Adapters: Implementations that connect to specific technologies

Ports: The Interfaces

Ports are interfaces defined in your domain:

/'l This is a PORT —it's in the Donmain |ayer
i nterface Booki ngRepositorylnterface

{

public function save(Booki ng $booki ng): void;

public function findByld(Bookingld $id): ?Booking;

public function findActiveByRestaurant(Restaurantld $id): Booki ngCollection;
}

The domain knows it needs to save and retrieve bookings. It doesn't know how.

Adapters: The Implementations

Adapters live in the infrastructure layer and implement the ports:

/1 This is an ADAPTER —it's in the Infrastructure |ayer
final class El oquent Booki ngRepository inplenents Booki ngRepositorylnterface

{

public function save(Booki ng $booking): void

{
$nodel = Booki nghbdel : : fi ndOr New($booki ng->i d->toString());
$nodel ->fill ($thi s->mapper - >t oDat abase($booki ng));
$nodel - >save();
}
public function findByld(Bookingld $id): ?Booking
{
$nodel = Booki ngvbdel :: find($id->toString());
return $nodel ? $this->mapper->toDonai n($nodel) : nul|;
}

Why This Matters

Y ou can swap adapters without changing business logic:

* Today: MySQL via Eloquent
» Tomorrow: PostgreSQL via Doctrine
* Testing: In-memory fake repository

/1 Production
$repository = new El oquent Booki ngRepository();

/'l Testing
$repository = new | nMenor yBooki ngRepository();

/1 The domain code is identical in both cases
$booki ng = $repository->findByl d($booki ngl d);
$booki ng- >confirn();

$reposi tory->save($booki ng) ;

Y our domain is protected from infrastructure changes.

Pillar 3: CQRS — Separating Reads from Writes

CQRS (Command Query Responsibility Segregation) answers. How do | handle the different needs of reading
and writing?

The Problem

Reading and writing have different requirements:

Writing needs:

* Validation

* Businessrules

* Transactions

* Event publishing

* Consistency
Reading needs:

* Speed

* Flexibility

« Joins across multiple tables

» Aggregations

* Pagination

Trying to use the same model for both creates compromises.

The Solution: Split Them

Commands change state:

final readonly class CreateBooki ngConmand
{
public function _ construct(
publ i ¢ Booki ngld $booki ngl d,
public Cientld $clientld,
public Restaurantld $restaurantld,

public TineSlot $tineSlot,
public PartySize $partySi ze
) {1

Queriesread state:

final readonly class CetBookingByl dQuery
{

public function _ construct(
publ i ¢ Booki ngld $booki ngld

) {3

Commands Never Return Domain Data

Thisis amindset shift. Commands don't return the created entity:

/1 Wong thinking
$booki ng = $t hi s- >commandBus- >di spat ch(new Cr eat eBooki ngConmand(...));
return response()->j son($booking); // \Wat to return?

/1 Right thinking

$booki ngl d = Bookingl d::generate(); // Cenerate ID first

$t hi s- >commandBus- >di spat ch(new Cr eat eBooki ngCommand($booki ngld, ...));
return response()->json(['id => $bookingld->toString()]); // Return ID

The ID exists before the command. The command ensures persistence. Y ou aready have what you need.

Queries Can Be Optimized Independently

Since queries are separate, you can:

» Use raw SQL for complex reports
* Join tables from different domains
 Cache aggressively

» Useread replicas

final class CGetBookingLi stHandl er
{
public function handl e(Get Booki ngLi st Query $query): Booki ngLi st Dto
{
/] Direct SQ., optimzed for this specific use case
/1 No need to go through domain entities
$results = DB::tabl e(' bookings')
->join('clients', 'bookings.client_id, "=, "clients.id")
->join('restaurants', 'bookings.restaurant_id', '='", 'restaurants.id")
->sel ect ([

' bookings.id',

' booki ngs. date',

' booki ngs. status',

‘clients.nane as client_nane',
‘restaurants. nane as restaurant_nane',

1)
->wher e(' booki ngs. restaurant _id', $query->restaurantld->toString())
- >pagi nat e(20) ;

return BookingLi stDto::fronueryResults($results);

Thisisn't "cheating”. Thisis the point of CQRS—different paths for different needs.

How The Three Pillars Fit Together

Architecture Layers

(N\
HTTP LAYER
Controllers receive requests, dispatch commands/queries
\ J
uses
A 4
(N\

APPLICATION LAYER

Commands / Handlers Queries / Handlers

Orchestrates Domain Logic Returns DTOs (can skip domain)

uses

A 4

DOMAIN LAYER

Entities | Value Objects | Domain Events | Services

(Pure business logic, no infrastructure dependencies)

A

implements

INFRASTRUCTURE LAYER

Repositories | External APls | Email | Queues | Cache

(Implements interfaces defined in Domain)

Four-layer architecture diagram showing HTTP Layer at top, Application Layer with Commands and Queries in the middle,
Domain Layer with Entities and Value Objects below, and Infrastructure Layer with Repositories and External Services at
the bottom

1. HTTP Layer receives arequest
2. Application Layer dispatches acommand or query

FREE SAMPLE - Pragmatic DDD with Laravel

3. Command handlers use Domain entities and I nfrastructur e repositories
4. Query handlers can go directly to the database for reads
5. Domain contains business logic, isolated from everything else

6. Infrastructur e implements the technical details

A Concrete Example

Let'strace a booking confirmation through al three pillars:

HTTP Layer (Laravel)

final class ConfirnmBooki ngActi on extends Controller

{
public function __invoke(
Conf i r mBooki ngRequest $request,
ConmmandBus $commandBus
): JsonResponse {
$comrandBus- >di spat ch(new Confi r mBooki ngComrand(
booki ngl d: Booki ngld::fronfString($request->route('id))
)i
return response()->json(['status’ => 'confirned']);
}
}

Application Layer (CQRS)

final class ConfirnmBooki ngHandl er
{

public function _ construct(
privat e Booki ngRepositorylnterface $repository,
private Event Bus $event Bus

) {3

public function handl e(ConfirnBooki ngConmand $conmand): void

{
$booki ng = $thi s->repository->findByl d($command- >booki ngl d) ;

if ($booking === null) {

t hrow new Booki ngNot Found($conmand- >booki ngl d) ;
}
$booki ng->confirn(); // Donein |ogic

$t hi s->reposi tory->save($booki ng) ;
$t hi s- >event Bus- >publ i sh($booki ng- >pul | Events());

Domain Layer (DDD)

cl ass Booki ng extends Entity

public function confirn(): void

final
{
{
}
}

if ($this->status !== BookingStatus::Pending) {
t hr ow new Booki ngCannot BeConf i r med($t hi s->i d);

}

$t hi s->status = Booki ngSt at us: : Confi r nmed;
$t hi s->confirmedAt = new Dat eTi nel nmut abl e() ;

$t hi s->recor dEvent (new Booki ngConf i r med($t hi s->id));

Infrastructure Layer (Hexagonal)

final

{

public function save(Booki ng $booking): void

{

$nodel = Booki nghbdel : : fi nd($booki ng->i d->toString());

$nodel - >st at us = $booki ng- >st at us- >val ue;
$nodel - >confirnmed_at = $booki ng->confirnedAt;
$nodel - >save();

Each layer has one job. Each pillar contributes its strength.

Summary
Pillar Question It Answers
DDD Where does business logic live?
Hexagonal How do | isolate business logic?

CQRS How do | handle reads vs writes?

cl ass El oquent Booki ngReposi tory inplements Booki ngRepositorylnterface

Key Concept
In the domain layer
Ports and adapters

Separate commands and queries

The next chapter explores why this architecture matters—not just for code quality, but for team productivity, Al
assistance, and long-term maintainability.

Enjoyed this chapter?

The complete book includes 38 chapters covering DDD Building Blocks, CQRS, Hexagona Architecture,
Testing, Bounded Contexts, Event Sourcing, and Al-assisted devel opment patterns.

Get the full book at:

www.pragmaticddd.com

$29.99 - PDF + EPUB

